Математика примеры решения задач, выполнение контрольных, курсовых работ

https://www.poxot.net

Математика
Линии и поверхности уровня
Вычислить частные производные функции 
Найти локальные экстремумы функции
Криволинейные интегралы
Формула Грина-Остроградского
Определить ранг матрицы
Решение произвольных систем линейных уравнений
Линейное (векторное) пространство
Найти предел
Исследование функций с помощью производной
Производная по направлению
Линейные уравнения первого порядка.
Неопределенный и определенный интегралы
Найти интеграл
Вычислить несобственный интеграл
Вычисление площади плоской фигуры
Исследовать на сходимость ряд
 

Линейное (векторное) пространство

Как известно, линейные операции (сложение, вычитание, умножение на число) определены по-своему для каждого множества (числа, многочлены, направленные отрезки, матрицы). Сами операции различны, но их свойства одинаковы.

 Эта общность свойств позволяет обобщить понятие линейных операций для любых множеств вне зависимости от того, что это за множества (числа, матрицы и т.д.).

 Для того, чтобы дать определение линейного (векторного) пространства рассмотрим некоторое множество L действительных элементов, для которых определены операции сложения и умножения на число.

 Эти операции обладают свойствами:

 1) Коммутативность + = +

2) Ассоциативность (+) + = + (+)

3)Существует такой нулевой вектор , что +=для "Î L

4) Для "Î L существует вектор  = -, такой, что +=

 5)1× =

 6) a(b) = (ab)

 7) Распределительный закон (a + b) = a+ b

 8) a(+) = a+ a

 Определение: Множество L, элементы которого обладают перечисленными выше свойствами, называется линейным (векторным) пространством, а его элементы называются векторами.

Линейные преобразования

 Определение: Будем считать, что в линейном пространстве L задано некоторое линейное преобразование А, если любому элементу Î L по некоторому правилу ставится в соответствие элемент АÎ L.

 Определение: Преобразование А называется линейным, если для любых векторов Î L и Î L и любого a верно:

A(+) = A+A

A(a) = aA

 Пример. Является ли А линейным преобразованием. А=+¹ 0.

Запишем преобразование А для какого- либо элемента . А = +

Проверим, выполняется ли правило операции сложения для этого преобразования А(+) = ++; A() + A() = +++, что верно только при = 0, т.е. данное преобразование А нелинейное.

Матрицы линейных преобразований

 Пусть в n- мерном линейном пространстве с базисом ,,…, задано линейное преобразование А. Тогда векторы А,…,А- также векторы этого пространства и их можно представить в виде линейной комбинации векторов базиса:

A= a11+ a21+…+ an1

A= a12+ a22+…+ an2

……………………………….

A= an1+ an2+…+ ann

Тогда матрица А =  называется матрицей линейного преобразования А.

 Если в пространстве L взять вектор = x1+ x2+…+ xn, то AÎ L.

, где

……………………………..

 Эти равенства можно назвать линейным преобразованием в базисе ,,…,.

В матричном виде:

, А×

 Пример. Найти матрицу линейного преобразования, заданного в виде:

x¢ = x + y

y¢ = y + z

z¢ = z + x

x¢ = 1×x + 1×y + 0×z

y¢ = 0×x + 1×y + 1×z

z¢ = 1×x + 0×y + 1×z

A =

На практике действия над линейными преобразованиями сводятся к действиям над их матрицами.

Определение: Если вектор переводится в вектор  линейным преобразованием с матрицей А, а вектор  в вектор   линейным преобразованием с матрицей В, то последовательное применение этих преобразований равносильно линейному преобразованию, переводящему вектор  в вектор (оно называется произведением составляющих преобразований).

С = В×А

Уравнение плоскости по одной точке и двум векторам коллинеарным плоскости Пусть заданы два вектора  и , коллинеарные плоскости. Тогда для произвольной точки М(х, у, z), принадлежащей плоскости, векторы  должны быть компланарны.

Пример. Найти уравнение плоскости, зная, что точка Р(4, -3, 12) – основание перпендикуляра, опущенного из начала координат на эту плоскость.

Пример. Задано линейное преобразование А, переводящее вектор в вектор  и линейное преобразование В, переводящее вектор  в вектор . Найти матрицу линейного преобразования, переводящего вектор  в вектор .

Математика